CONTACT RESISTANCE METER DAC-MR-100A DAC-MR-50A

SOKEN Contact Resistance Meter, DAC-MR-100A and DAC-MR-50A are ideal for measurement at both laboratory and on-site test instantly and easily with the resolution 0.1 micro ohm.
DAC-MR-100A is for measuring current 100A, and DAC-MR-50A is for 50 A .

Application

O Contact Resistance Measurement for Power Circuit Breaker (GIS, Switch Gear)
O Resistance Measurement for Bus Bar and Joint
O Conductive Resistance Measurement for Cables

Features

O Light and Durable, only about 8 kg
O Measuring Current 100A and 50A
O Resolution: 0.1μ ohm
○ Kelvin Clips for Quasi Four Terminal Measurements

Specifications

	DAC-MR-100A	DAC-MR-50A
Measuring Range	0-1.9999 m ohm	$0-1.9999 \mathrm{~m}$ ohm $0-19.999 \mathrm{~m}$ ohm
Measuring Current	DC100A $\pm 3 \%$	DC50A $\pm 3 \%$
Minimum Resolution	0.1μ ohm	
Accuracy	$\pm(0.5 \%$ Rdg +3 digits) at $1 / 10$ of full scale or more $\pm(0.5 \%$ Rdg +10 digits $)$ at $1 / 10$ of full scale or less	
Measuring Current Output	$1.000 \mathrm{~V} / 100 \mathrm{~A}$	$1.000 \mathrm{~V} / 50 \mathrm{~A}$
Display	$41 / 2$ digit (Max 1.9999)	$41 / 2$ digit (Max 19.999)
Power Consumption	800VA	410VA
AC Mains	AC $100 \mathrm{~V} \sim 240 \mathrm{~V} \pm 10 \% 50 / 60 \mathrm{~Hz}$	
Size	W305xH245xD250(mm)	W305xH245xD250(mm)
Weight	8.4 kg	7.4 kg
Accessory	4 terminals Measuring Cable (5M) with Kelvin Clip x 1 set AC Cord (2M) x 1, Grounding Cable (2M) x 1 Operation Manual x 1, Accessory Bag x 1	

Principle

A standard resistor $R s$ is introduced into the resistance meter as in the circuit diagram. A common current Is flows to both the resistor $R s$ and a specimen $R x$ under test. Thus, voltage drop generates separately: IsRs=Es for Rs, IsRx=Ex for $R x$.
The measured voltages, Es and Ex are divided in the dividing circuit.
$\mathrm{Ex} / \mathrm{Es}=\mathrm{I} s \mathrm{R} \mathrm{x} / \mathrm{I} \mathrm{s} R \mathrm{~s}=\mathrm{R} \mathrm{x} / \mathrm{R} \mathrm{s}$ A ratio of $R x / R$ s is given digitally.

Connection

1-34-22, Tobitakyu, Chofu Tokyo 182-0036
JAPAN

